Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts
نویسندگان
چکیده
Action potential duration (APD) and conduction velocity restitution explain the dependence of these parameters on the previous diastolic interval (DI). It is considered to be an adaptive mechanism for preserving diastole at fast heart rates. Hypokalaemia is known to induce ventricular arrhythmias that could be prevented by heptanol, the gap junction uncoupler, mediated through increases in ventricular refractory period (VERP) without alterations in APDs. The present study investigated alternans and restitution properties during normokalaemia, hypokalaemia alone or hypokalaemia with heptanol (0.1 mM) in Langendorff-perfused mouse hearts using a dynamic pacing protocol. APD90 alternans were elicited in the epicardium and endocardium during normokalaemia. Hypokalaemia increased the amplitudes of epicardial APD90 alternans when basic cycle lengths (BCLs) were ≤65 msec, which was associated with increases in maximum APD90 restitution gradients, critical DIs and APD90 heterogeneity. Heptanol (0.1 mM) did not exacerbate or reduce the APD90 alternans or alter these restitution parameters further. By contrast, endocardial APD90 alternans did not show increases in amplitudes during hypokalaemia at short BCLs studied, and restitution parameters were also unchanged. This was true whether in the presence or absence of 0.1 mM heptanol. The study demonstrates that anti-arrhythmic effects of heptanol exerted during hypokalaemia occurred despite exacerbation of APD90 alternans. This would suggest that even in the presence of arrhythmogenic APD90 alternans, arrhythmias could still be prevented by influencing VERP alone. Restitution data obtained here by dynamic pacing were compared to previous data from S1S2 pacing.
منابع مشابه
Effects of pharmacological gap junction and sodium channel blockade on S1S2 restitution properties in Langendorff-perfused mouse hearts
Gap junctions and sodium channels are the major molecular determinants of normal and abnormal electrical conduction through the myocardium, however, their exact contributions to arrhythmogenesis are unclear. We examined conduction and recovery properties of regular (S1) and extrasystolic (S2) action potentials (APs), S1S2 restitution and ventricular arrhythmogenicity using the gap junction and ...
متن کاملDetermination of action potential wavelength restitution in Scn5a+/− mouse hearts modelling human Brugada syndrome
Brugada syndrome is a primary electrical disorder of the heart, predisposing affected individuals to potentially lethal, ventricular tachy-arrhythmias. A number of mechanisms have been identified as being important increasing the risk of these rhythms. Wavelength (λ) restitution has been suggested to predict the onset of action potential duration (APD) alternans in mouse Scn5a hearts modelling ...
متن کاملAction potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
Action potential duration (APD) restitution properties and repolarization alternans are thought to be important arrhythmogenic factors. We investigated the role of intracellular calcium (Ca2+i) cycling in regulating APD restitution slope and repolarization (APD) alternans in patch-clamped rabbit ventricular myocytes at 34 to 36 degrees C, using the perforated or ruptured patch clamp techniques ...
متن کاملAction potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a+/− hearts
Reductions in cardiac action potential wavelength, and the consequent wavebreak, have been implicated in arrhythmogenesis. Tachyarrhythmias are more common in the Brugada syndrome, particularly following pharmacological challenge, previously modelled using Scn5a(+/-) murine hearts. Propagation latencies and action potential durations (APDs) from monophasic action potential recordings were used ...
متن کاملRole of the Alternans of Action Potential Duration and Aconitine-Induced Arrhythmias in Isolated Rabbit Hearts
Under conditions of Na(+) channel hyperactivation with aconitine, the changes in action potential duration (APD) and the restitution characteristics have not been well defined in the context of aconitine-induced arrhythmogenesis. Optical mapping of voltage using RH237 was performed with eight extracted rabbit hearts that were perfused using the Langendorff system. The characteristics of APD res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016